Monte Carlo‐based investigation of absorbed‐dose energy dependence of radiochromic films in high energy brachytherapy dosimetry

نویسندگان

  • Mishra Subhalaxmi
  • T. Palani Selvam
چکیده

Relative absorbed dose energy response correction, R, for various radiochromic films in water phantom is calculated by the use of the Monte Carlo-based EGSnrc code system for high energy brachytherapy sources 60Co, 137Cs, 192Ir and 169Yb. The corrections are calculated along the transverse axis of the sources (1-15 cm). The radiochromic films investigated are EBT, EBT2 (lot 020609 and lot 031109), RTQA, XRT, XRQA, and HS. For the 60Co source, the value of R is about unity and is independent of distance in the water phantom for films other than XRT and XRQA. The XRT and XRQA films showed distance dependent R values for this source (the values of R at 15 cm from the source in water are 1.845 and 2.495 for the films XRT and XRQA, respectively). In the case of 137Cs and 192Ir sources, XRT, XRQA, EBT2 (lot 031109), and HS films showed distant-dependent R values. The rest of the films showed no energy dependence (HS film showed R values less than unity by about 5%, whereas the other films showed R values higher than unity). In the case of 169Yb source, the EBT film showed no energy dependence and EBT2 film (lot 031109) showed a distance-independent R value of 1.041. The rest of the films showed distance-dependent R values (increases with distance for the films other than HS). The solid phantoms PMMA and polystyrene enhance the R values for some films when compared the same in the water phantom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation

Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs). Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of...

متن کامل

Comparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation

Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous pha...

متن کامل

Dosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry

Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...

متن کامل

Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

UNLABELLED BACKGROUND.: The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. MATERIALS AND METHODS A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 (60)Co brachytherapy source with GafChromic® EBT...

متن کامل

Investigation of dose distribution 252Cf Isotron brachytherapy source based on TG-43U1 protocol by Monte Carlo method.

Introduction: The commercial 252Cf sources are too large in size and clinical applications of neutron brachytherapy (NBT) are limited to a small number of intracavitary treatments of cervical cancers. Recently, under the Cooperative Research and Development Agreement (CRADA) with Isotron Inc., the Oak Ridge National Laboratory (ORNL) encapsulated a new medical 252Cf sources, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014